ENTRYBLEED

A Universal KASLR Bypass against KPTI on Linux

William Liu, Joseph Ravichandran, Mengjia Yan

Where does EntryBleed fit in?

software

memory
corruption

defenses

software hardware

memory
corruption

parch
side-channel

defenses attacks

software hardware

memory
corruption

ENTRYBLEED
defenses

Contributions

/ Reveal \

misconception in

4 A

CVE-2022-4543:
KASLR bypass on
bare metal and VT-x

K KPTI security

v

4 \

Provide root cause
analyses

\ v

Why should we care? &

Back in the old days...

(Kernel Bug) + [Exploit] + [
_()

_

root

Hardcoded
Offsets

)

9

KASLR
pre-ASLR ASLR

Fixed

Offset Randomized

Offset

CODE
CODE

With KASLR

(Kernel Bug) + [Exploit] + [
4)

_

Hardcoded
Offsets

)

9

With KASLR

(i) (oo) ()

Rebased
Offsets

)

-

_

root

~

9

With KASLR

(Kernel Bugj + [Exploit) +

KASLR
Leakage

Rebased
).I-(Offsets)

-

_

root

~

9

Can take as

exploit

much
effort as main

12

With EntryBleed

Cooroo) (Cmon)

N SLR
Leak.

(

_

root

~

)+ (

9

Rebased
Offsets

)

Pre-Meltdown

User

i ﬁ

Kernel
Addresses

Prefetch Attack

Prefetch Attack
® |faVAisinvalid

Prefetch Attack

® |[faVAis invalid
O No ISA exceptions

Prefetch Attack

® |[faVAis invalid
O No ISA exceptions
O But takes longer

Prefetch Attack

® |[faVAis invalid
O No ISA exceptions
O But takes longer

-

\

side-channel vector

KPTI

(usercr3 |—>

f

.

User

N

Addresses

J

20

KPTI

(Kernel CR3)%

4 D

User
Addresses

Kernel

Addresses

. J

21

Does the prefetch attack still work?

Prefetch vs. KPTI

Fetching the KASLR slide with prefetch

Upon reporting this bug to the Linux kernel security team, our suggestion was to start randomizing the
location of the percpu cpu_entry_area (CEA), and consequently the associated exception and syscall
entry stacks. This is an effective mitigation against remote attackers but is insufficient to prevent a local
attacker from taking advantage. 6 years ago, Daniel Gruss et al. discovered a new more reliable technigue
for exploiting the TLB timing side channel in x86 CPU's. Their results demonstrated that prefetch instructions
executed in user mode retired at statistically significant different latencies depending on whether the
requested virtual address to be prefetched was mapped vs unmapped, even if that virtual address was only
mapped in kermnel made.lkF‘Tl was helpful in mitigating this side channell however, most modern CPUs now
have innate protection for Melidown, which kPTI was specifically designed to address, and thusly kPTI
(which has significant performance implications) is disabled on modern microarchitectures. That decision
means it is once again possible to take advantage of the prefetch side channel to defeat not only KASLR,
but also the CPU entry area randomization mitigation, preserving the viability of the CEA stack corruption
exploit technique against modern X86 CPUSs.

There are surprisingly few fast and reliable examples of this prefetch KASLR bypass technique available in
the open source realm, so | made the decision to write one.

Prefetch vs. KPTI

Fetching the KASLR slide with prefetch

Upon reporting this bug to the Linux kernel security team, our suggestion was to start randomizing the
location of the percpu cpu_entry_area (CEA), and consequently the associated exception and syscall
entry stacks. This is an effective mitigation against remote attackers but is insufficient to prevent a local
attacker from taking advantage. 6 years ago, Daniel Gruss et al. discovered a new more reliable technigue
for exploi ' ' o S o o ctions
executed was helpful in mitigating this side channel
requesieu vINuar duaress U UE PIETELTEY Was MEPPEU Vs UIMdapped, EVETT T UTEL VITIOEN duureEss wWds Dﬂ|}f
mapped in kernel mode. |kPT| was helpful in mitigating this side channel| however, most modern CPUs now
have innate protection for Meltdown, which kPTI was specifically designed to address, and thusly kPTI
(which has significant performance implications) is disabled on modern microarchitectures. That decision
means it is once again possible to take advantage of the prefetch side channel to defeat not only KASLR,
but also the CPU entry area randomization mitigation, preserving the viability of the CEA stack corruption
exploit technique against modern X86 CPUs.

There are surprisingly few fast and reliable examples of this prefetch KASLR bypass technique available in
the open source realm, so | made the decision to write one.

But...

25

Isolation Flaw in KPTI

Ideal KPTI
4 N
(ser k3) 5 Adtl:lJ rsees;es
_ _J

Isolation Flaw in KPTI

((usercr3) —>

Real KPTI

7

User Addresses

~

Ideal KPTI
4 N
User
Addresses
_ _J

Kernel Trampolines

.

y

(User CR3)

27

What VA is reasonable for this mapping?

28

L
A)
KASLR

Kernel

Trampoline

_ J

29

L
A)
KASLR

Kernel

Trampoline

_ J

2

4

2

KASLR

~N

Kernel

Randomized
Offset

\4

| Trampoline |

N\

J

30

L
A)
KASLR

Kernel

Trampoline

_ J

4

Kernel

Randomized
Offset

\4

| Trampoline |

N\

J

Kernel

Trampoline

Kernel

31

KASLR

Kernel

Trampoline

Kernel

Ky

Attack Strategy

KASLR Leak!
et |
Execute N Prefetch
Syscall Guess \‘
Slow

| Try a New Guess |

TLB Miss

Attack Strategy

® Bruteforce range
o Start: Oxffffffff80000000
o End: Oxffffffffc0000000

® Increment by 2MB

34

120

=
o
o

co
o

[=)]
o

n
Q
@)
>
@)
>
o
&
>
©)
C
(O]
)
(o]
—
e
@)
-
Q
Y
)
| -
o

B
o

Oxffffffffal600000, 35

Oxffifffff 80000000

Oxffffffffc0000000

35

Results

CPU Model Kernel Version | Average Leakage | Accuracy Rate
Time (s)
Intel i5-4590 5.4.0-146 0.2236 100%
Intel i7-7950H 5.15.0-83 0.2761 99.7%
Intel i7-6700 5.15.0-67 0.1334 99.6%
Intel i7-7950H 5.15.0-58 0.4148 99.9%
(KVM)

36

DEMO

https://drive.google.com/file/d/1B9LoK_5vuYNuulyJZ1eMsWbgwfONHLzp/view?usp=sharing

USER

test@arch-sec-xss:~$

ROOT

root@arch-sec-xss:/home/test#

"arch-sec-xss.csatl.mi" 14:04 20-0Oct-23

38

hasp_demo

How can prefetch work after address space switch?

39

TLB Flushed!

O

Execute
Syscall

.

J

Prefetch
Guess

Fast

Slow

40

movq rsp, ¥rdi
movqg PER_CPU_VAI
UNWIND_HINT_ER

pushq RSP-RDI(%rdi)
pushg (%rdi)

SYM_INNER_LABEL (entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
ANNMOTATE_NOENDER
swapgs
5 tq

SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDER
int3

SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9

41

movq rsp,
movq PER_CPU_VAR(cpu_tss_rw # TSS_sp@),
UNWIND_HINT_EN

pushq RSP-RDI(%rdi)
pushg (%rdi)

i
) rsp
SYM_INNER_LABEL (entry_SYSRET(Q_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs
tq
SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9

42

movq rsp, %rdi
movq PER_CPU_VAR(cpu_tss_rw # TSS_sp@),
UNWIND_HINT_EN

pushaq RSP-RDI(%rdi)
pushg (%rdi)

STACKI FAK FRASE NOCI ORRFR

rdi
opq rsp
SYM_INNER_LABEL (entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs
tq
SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9

43

movq rsp, %rdi
movq
UNWIND_HINT_EN

pushq RSP-RDI(
pushgqg (%rdi)

SYM_INNER_LABEL (entry_SYSRET(Q_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs

|_end, SYM_L_GLOBAL)
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9

44

Attacking Guest OS

e How does side-channel fare under VM

exits? 9

Read the paper!

Effects of VM
MMU
Optimizations

\ .

Fully Working
POC

Mitigation
Proposal

EntryBleed against
VM Exits

(More Data)

46

LELCEWEVE

LELCEWEVE

® KPTlI is insufficient against prefetch

48

LELCEWEVE

® KPTlI is insufficient against prefetch
® An unpatched Linux KASLR bypass on Intel

49

LELCEWEVE

® KPTlI is insufficient against prefetch
® An unpatched Linux KASLR bypass on Intel
® Lowers exploitation difficulty

50

compute. collaborate. create.

willsroot.io) will@willsroot.io
Questions?

