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Where does EntryBleed fit in?
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Why should we care? &
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With EntryBleed
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Prefetch Attack
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Does the prefetch attack still work?



Prefetch vs. KPTI

Fetching the KASLR slide with prefetch

Upon reporting this bug to the Linux kernel security team, our suggestion was to start randomizing the
location of the percpu cpu_entry_area (CEA), and consequently the associated exception and syscall
entry stacks. This is an effective mitigation against remote attackers but is insufficient to prevent a local
attacker from taking advantage. 6 years ago, Daniel Gruss et al. discovered a new more reliable technigue
for exploiting the TLB timing side channel in x86 CPU's. Their results demonstrated that prefetch instructions
executed in user mode retired at statistically significant different latencies depending on whether the
requested virtual address to be prefetched was mapped vs unmapped, even if that virtual address was only
mapped in kermnel made.lkF‘Tl was helpful in mitigating this side channell however, most modern CPUs now
have innate protection for Melidown, which kPTI was specifically designed to address, and thusly kPTI
(which has significant performance implications) is disabled on modern microarchitectures. That decision
means it is once again possible to take advantage of the prefetch side channel to defeat not only KASLR,
but also the CPU entry area randomization mitigation, preserving the viability of the CEA stack corruption
exploit technique against modern X86 CPUSs.

There are surprisingly few fast and reliable examples of this prefetch KASLR bypass technique available in
the open source realm, so | made the decision to write one.
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Isolation Flaw in KPTI
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Isolation Flaw in KPTI
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What VA is reasonable for this mapping?
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Attack Strategy
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Attack Strategy

® Bruteforce range
o Start: Oxffffffff80000000
o End: Oxffffffffc0000000

® Increment by 2MB
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Results

CPU Model Kernel Version | Average Leakage | Accuracy Rate
Time (s)
Intel i5-4590 5.4.0-146 0.2236 100%
Intel i7-7950H 5.15.0-83 0.2761 99.7%
Intel i7-6700 5.15.0-67 0.1334 99.6%
Intel i7-7950H 5.15.0-58 0.4148 99.9%
(KVM)
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DEMO


https://drive.google.com/file/d/1B9LoK_5vuYNuulyJZ1eMsWbgwfONHLzp/view?usp=sharing

USER

test@arch-sec-xss:~$

ROOT

root@arch-sec-xss:/home/test#

"arch-sec-xss.csatl.mi" 14:04 20-0Oct-23

38



hasp_demo


How can prefetch work after address space switch?
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movq rsp, ¥rdi
movqg PER_CPU_VAI
UNWIND_HINT_ER

pushq RSP-RDI(%rdi)
pushg (%rdi)

SYM_INNER_LABEL (entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
ANNMOTATE_NOENDER
swapgs
5 tq

SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDER
int3

SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9
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movq rsp,
movq PER_CPU_VAR(cpu_tss_rw # TSS_sp@),
UNWIND_HINT_EN

pushq  RSP-RDI(%rdi)
pushg  (%rdi)

i
) rsp
SYM_INNER_LABEL (entry_SYSRET(Q_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs
tq
SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9
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movq rsp, %rdi
movq PER_CPU_VAR(cpu_tss_rw # TSS_sp@),
UNWIND_HINT_EN

pushaq RSP-RDI(%rdi)
pushg  (%rdi)

STACKI FAK FRASE NOCI ORRFR

rdi
opq rsp
SYM_INNER_LABEL (entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs
tq
SYM_INNER_LABEL (entry_SYSRETQ_end, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9
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movq rsp, %rdi
movq
UNWIND_HINT_EN

pushq RSP-RDI(
pushgqg (%rdi)

SYM_INNER_LABEL (entry_SYSRET(Q_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDER
swapgs

|_end, SYM_L_GLOBAL)
int3
SYM_CODE_END(entry_SYSCALL_64)

arch/x86/entry_64.S, entry_syscall_64, v6.5.9
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Attacking Guest OS

e How does side-channel fare under VM

exits? 9



Read the paper!

Effects of VM
MMU
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\ .

Fully Working
POC

Mitigation
Proposal

EntryBleed against
VM Exits

( More Data )
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LELCEWEVE

® KPTlI is insufficient against prefetch
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LELCEWEVE

® KPTlI is insufficient against prefetch
® An unpatched Linux KASLR bypass on Intel
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LELCEWEVE

® KPTlI is insufficient against prefetch
® An unpatched Linux KASLR bypass on Intel
® Lowers exploitation difficulty
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compute. collaborate. create.

willsroot.io ) will@willsroot.io
Questions?




