
FaultDetective
Explainable to a Fault, from the Design Layout to
the Software

Zhenyuan (Charlotte) Liu, Dillibabu Shanmugam and Patrick Schaumont
WPI Vernam Lab

NEHWS 2025

April 2025

CHES 2024

What is Fault Root-Causing?
Explain Low-level Hardware Effects from

High-level Software Observations

High-Level
Software

Low-Level
Hardware

Fault Effects

Fault Injection

1

Why do we care?

Understand more than just the
immediate output effects.

Ø Three fault effects: correct
output, no effects, faulty output

Ø Unpredictable fault behavior

ü Initial fault (the root-cause)
ü Fault propagation from

hardware to software
ü Design improvements

Current Research and Challenges

• Simulation-based research:
─ Based on a fault model (bit flipping, instruction skips …)
─ Assumptions, depending on the accuracy of the fault model

• Empirical research:
─ Observes the real-world effects of faults
─ Limited visibility into hardware interactions
─ Cannot explain by the immediate output

• The unpredictable fault behavior:
─ Sane machine
─ Weird machine

§ Undefined state space
§ Difficult to model and analyze
§ The state space for a 3000-bit processor contains 23000 possible states

Sane
Machine

Weird
Machine

FaultDetective

Architecture and Micro-Architecture States

3

Software

Hardware
ISA

TOP-A Top

W1 W2 Word

scan_in scan_out
Bit

TOP-M Top

W1 W2 W3 W4 Word

M1 M2 Module

Programmer Visible Bits

Programmer Non-Visible Bits

Architecture State

Micro-Architecture State

Hardware state

Micro-Architecture State

Architecture State

Hash Tree

4

ISA

TOP-A Top

W1 W2 Word

scan_out
Bit

TOP-M Top

W1 W2 W3 W4 Word

M1 M2 Module

Root

Leaf

Intermediate

Intermediate

Root

Intermediate

Architecture State Digest

Micro-Architecture State Digest
*please refer to our paper and find more details on the hash function.

scan_in

• Any changes at a leaf node will result in a
change at the root node

• Backtrack from the root node to identify
which leaf or intermediate node is faulty

• Find the root-cause of the fault

Dynamic State Transition Graph

5

ISA

TOP-A Top

W1 W2 Word

scan_in scan_out
Bit

TOP-M Top

W1 W2 W3 W4 Word

M1 M2 Module

Architecture Dynamic State
Transition Graph (ADSTG)

Micro-Architecture Dynamic
State Transition Graph (MDSTG)

A1

A2
Per Instruction

M1

M2

Per Cycle

Track the system behavior in graphs!

Architecture State Digest

Micro-Architecture State Digest

Dynamic State Transition Graph – Before Fault

6

Architecture state
Transition time

Micro-architecture state

Ø Sane State → Achieved in accordance with the programmer’s intent[1]

Ø The Sane Machine → The collection of all possible sane states

[1] Thomas Dullien. Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics in Computing, 8(2):391–403, 2020.

Pre instruction
transition

Pre cycle transition

Programmer
visible bits

All bits

Dynamic State Transition Graph – After Fault

7

@29

Disables further instruction-
fetch, halt the processor

[1] Thomas Dullien. Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics in Computing, 8(2):391–403, 2020.

Ø Weird State → The behavior that occurs
when the sane state enters an otherwise
unreachable state[1]

Ø The Weird Machine → The collection
of all possible weird states

ü Visualize sane/weird machine
ü Initial fault and its propagation

Micro-architecture
weird state

Architecture
weird state

Architecture state Micro-architecture state

Transition time
Architecture sane

state
Micro-architecture

sane state

Register R2
03 →	13

Visualized Fault Patterns

• Four fault patterns

8

States

Weird machine does exist!

Fault Root-Cause Analysis: FaultDetective

• Hardware Redundancy + Scan Chain

9

Processor
Peripherals

Memory
Registers

Core

Core Core

Core

Core Core

On-chip
Network

Scan In

Scan Out

ü Lock-step execution
ü Minimal hardware in
on-chip network
ü Fault checking in software
by redundancy
ü Once a fault is detected,
halt all cores
ü Scan chain provides
visibility into all flip-flop bits

Fault Root-Cause Analysis: FaultDetective

10

ü Plot the ADSTG/MDSTG for both sane and weird machine
ü Apply to both simulation and measurement fault experiments

Fault Detection by Software
Redundancy

Fault root-cause

Software
Assembly

Hardware
Verilog

Time

Fault Injection

Fault
propagation

Scan states over time after fault

Scan
States

• Initial fault (root-cause)

ü Detect differences among
cores
ü Earliest fault detection

Document hardware state
periodically

Layout-Aware Fault Analysis in Simulation

• Realization in ASIC (six-core MSP430)
• Implement real-world fault injection using layout data (laser and clock fault

injections)
• No assumptions about the fault

11

RAM

CORE
0

CORE1

CORE2

CORE5

CORE4

CORE3

Scan In Scan Out

Layout Distribution

X-coordinate (!")

Y-
co

or
di

na
te

 (!
"

)

Selected Region

Register Bit

Layout P&R

Laser Spot Size = 15 "#

Core 0 Pm
em

 Pm
em

 D
m

em

Core 1 Core 2

Clock

 D
m

em

Core 4 Core 3Core 5

CAPRI6

Measurement Result with EM-fault Injection

EM Heatmap Faulty Scan Bits

Any Questions?
Thank you
zliu12@wpi.edu
dshanmugam@wpi.edu
pschaumont@wpi.edu

NEHWS 2025

mailto:zliu12@wpi.edu
mailto:dshanmugam@wpi.edu
mailto:pschaumont@wpi.edu

