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What is Fault Root-Causing?
Explain Low-level Hardware Effects from 

High-level Software Observations 

High-Level 
Software

Low-Level 
Hardware

Fault Effects

Fault Injection
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Why do we care?

Understand more than just the 
immediate output effects.

Ø Three fault effects: correct 
output, no effects, faulty output

Ø Unpredictable fault behavior 

ü Initial fault (the root-cause)
ü Fault propagation from 

hardware to software 
ü Design improvements



Current Research and Challenges

• Simulation-based research:
─ Based on a fault model (bit flipping, instruction skips …)
─ Assumptions, depending on the accuracy of the fault model

• Empirical research:
─ Observes the real-world effects of faults
─ Limited visibility into hardware interactions
─ Cannot explain by the immediate output

• The unpredictable fault behavior:
─ Sane machine
─ Weird machine 

§ Undefined state space 
§ Difficult to model and analyze
§ The state space for a 3000-bit processor contains 23000 possible states

Sane 
Machine

 

Weird 
Machine
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Architecture and Micro-Architecture States
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Micro-Architecture State

Architecture State

Hash Tree
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*please refer to our paper and find more details on the hash function. 

scan_in

• Any changes at a leaf node will result in a 
change at the root node

• Backtrack from the root node to identify 
which leaf or intermediate node is faulty

• Find the root-cause of the fault



Dynamic State Transition Graph 

5

ISA

TOP-A Top

W1 W2 Word

scan_in scan_out
Bit

TOP-M Top

W1 W2 W3 W4 Word

M1 M2 Module

Architecture Dynamic State 
Transition Graph (ADSTG) 

Micro-Architecture Dynamic 
State Transition Graph (MDSTG) 
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Track the system behavior in graphs!
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Dynamic State Transition Graph – Before Fault  
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Architecture state
Transition time

Micro-architecture state

Ø Sane State → Achieved in accordance with the programmer’s intent[1] 

Ø The Sane Machine → The collection of all possible sane states

[1] Thomas Dullien. Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics in Computing, 8(2):391–403, 2020. 

Pre instruction 
transition 

Pre cycle transition 

Programmer 
visible bits

All bits



Dynamic State Transition Graph – After Fault  
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@29

Disables further instruction-
fetch, halt the processor 

[1] Thomas Dullien. Weird machines, exploitability, and provable unexploitability. IEEE Transactions on Emerging Topics in Computing, 8(2):391–403, 2020. 

Ø Weird State → The behavior that occurs 
when the sane state enters an otherwise 
unreachable state[1] 

Ø The Weird Machine → The collection
of all possible weird states

ü Visualize sane/weird machine
ü Initial fault and its propagation 

Micro-architecture 
weird state

Architecture 
weird state

Architecture state Micro-architecture state

Transition time
Architecture sane 
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Visualized Fault Patterns

• Four fault patterns
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States

Weird machine does exist! 



Fault Root-Cause Analysis: FaultDetective

• Hardware Redundancy + Scan Chain
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ü Lock-step execution
ü Minimal hardware in 
on-chip network
ü Fault checking in software
by redundancy
ü Once a fault is detected, 
halt all cores
ü Scan chain provides 
visibility into all flip-flop bits



Fault Root-Cause Analysis: FaultDetective
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ü Plot the ADSTG/MDSTG for both sane and weird machine
ü Apply to both simulation and measurement fault experiments

Fault Detection by Software 
Redundancy  

Fault root-cause

Software
Assembly

Hardware
Verilog

Time

Fault Injection

Fault 
propagation

Scan states over time after fault

Scan
States

• Initial fault (root-cause)

ü Detect differences among 
cores
ü Earliest fault detection

Document hardware state
periodically



Layout-Aware Fault Analysis in Simulation

• Realization in ASIC (six-core MSP430) 
• Implement real-world fault injection using layout data (laser and clock fault 

injections)
• No assumptions about the fault
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Any Questions?
Thank you
zliu12@wpi.edu
dshanmugam@wpi.edu
pschaumont@wpi.edu
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