

Citadel

Side-Channel-Resistant Enclaves with Secure Shared Memory on a Speculative Out-of-Order Processor.

Jules Drean Miguel Gomez-Garcia Thomas Bourgeat Srini Devadas

Everyone loves enclaves!!

Idea:

Hardened Process with Strong Isolation and Integrity Properties

Set Up:

But they are broken...

SCAver II - 2 2 2			
Stephan van Schaik University of Michigan stephys@umich.edu	Andrew Kwong University of Michigan ankwong@umich.edu Seattle, Wi kryan@enj	Daniel Genkin University of Michigan genkin@umich.edu	Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au

- Hardware vendors are not addressing the problem
- Most academic proposals are limited to software changes

Side channels are often considered out of the threat model...

Let's fix it! Citadel

- Hardware / Software co-design for usable enclave
- Secure against transient execution attacks
- Practical mechanism for secure shared memory
- End-to-end hardware and software implementation
- Fully open source

Overview

Hardware

RISC-V out-of-order multicore processor running on FPGA [0]

Uses MI6^[1] hardware mechanism for strong microarchitectural isolation

Software

- Secure Bootloader
- Security Monitor
- Linux Kernel Module

Enclaves from Linux processes

End-to-end Attestation protocol

15K TCB

End-to-End applications:

- Secure crypto library
- MicroPython runtime

Secure Shared Memory

Simple problem with many pitfalls

Speculation on shared memory enables transient execution attacks

Blocking speculation through uncacheable memory is insecure

0] RiscyOO: Composable building blocks to open up processor design. Zhang S, Wright A, Bourgeat T, Arvind A. In MICRO 2018. IEEE.

[1] Mi6: Secure enclaves in a speculative out-of-order processor. Bourgeat T, Lebedev I, Wright A, Zhang S, Devadas S. MICRO 2019. IEEE

Citadel

- Hardware / Software co-design for usable enclave
- Secure against transient execution attacks
- Practical mechanism for secure shared memory
- End-to-end hardware and software implementation
- Fully open source