
Department of Electrical and Computer Engineering

Fuzzing for Discovering Bugs and Side Channels in
Processors

Chathura Rajapaksha1, Sadullah Canakci1, Leila Delshadtehrani1, Anoop Nataraja2,
Michael Bedford Taylor2, Manuel Egele1, Ajay Joshi1

1Department of ECE, Boston University
2Department of ECE, University of Washington

Outline

▪ What is Fuzzing?

▪ ProcessorFuzz: Processor Fuzzing with Control and Status Registers Guidance [1]

▪ SIGFuzz: A Framework for Discovering Microarchitectural Timing Side Channels [2]

▪ Summary

Fuzzing for Discovering Bugs and Side Channels in Processors 2April 7, 2023 / Rajapaksha

What is Fuzzing?

▪ Fuzzing/fuzz testing:
Ø Running the target software with random or mutated inputs.

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 3

Mutation
Engine

Target
Software

Seed
Corpus

Bug

Monitor

Coverage

Crash?

Adapting Fuzzing for Hardware Testing

▪ What is the input format and how to mutate the inputs?
▪ Driving RTL signals Vs assembly test programs
▪ Mutations

▪ What is the coverage feedback metric?
▪ Standard RTL coverage metrics Vs new coverage metrics for fuzzing

▪ How to detect when the bugs get triggered?
▪ Golden models
▪ Hardware equivalent of a software crash?

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 4

Fuzzing for Hardware Testing

▪ Fuzzing has been ‘recently’ adapted for hardware testing.
▪ Hardware fuzzing research is rapidly growing [5-7].

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 5

Mutation
Engine

ISA Simulator

Seed
Corpus

Bug

Coverage

Design Under
Test

ISA Simulation

RTL Simulation

Compare

Mismatch?

Trace Log

Trace Log

Our Contributions

▪ What is the input format and how to mutate it?
▪ Driving RTL signals Vs assembly test programs
▪ Mutations

▪ What is the coverage feedback metric?
▪ Standard RTL coverage metrics Vs. New coverage

metrics for fuzzing

▪ How to detect when the bugs get triggered?
▪ Golden models
▪ Hardware equivalent of a software crash?

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 6

ProcessorFuzz: Processor Fuzzing with Control and Status Registers Guidance

▪ Problem: Existing coverage metrics for processor fuzzing is limited by
▪ Lack of support for widely used Hardware Description Languages (HDLs)
▪ Misleading coverage feedback

▪ Introduces a new coverage metric for processor fuzzing.
▪ New transition in CSR values -> coverage increase

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 7

mstatus, mcause, scause, medeleg frm, fflags

ProcessorFuzz: Design Overview

▪ ProcessorFuzz uses an ISA simulator to collect CSR transition coverage, making the
coverage collection more efficient and HDL agnostic.

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 8

ProcessorFuzz: Evaluation

▪ Evaluated on Rocket [8], BOOM [9], and BlackParrot [10] RISC-V processors.
▪ Detect known bugs 23% faster than the state-of-the-art DifuzzRTL [7].
▪ Discovered 9 new bugs

▪ 6 in BlackParrot processor
▪ 2 in Rocket and BOOM processors
▪ 1 in Dromajo ISA simulator

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 9

SIGFuzz: A Framework for Discovering Microarchitectural Timing Side Channels

▪ Problem: Existing methods are limited in
▪ Scalability
▪ Scope of side channels they can discover

▪ SIGFuzz introduces a generic method for discovering microarchitectural timing side
channels.

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 10

1: …
2: div x1, x5, x6
3: mul x8, x15, x21
4: …

1: …
2: div x1, x5, x6
3: nop
4: …

tref1
tref2
tref3
tref4

tmut1
tmut2
tmut3
tmut4

Reference Test Mutated Test

tref
2 ≠ tmut

2 Potential Side Channel

Trace Property 1

SIGFuzz: Design Overview

▪ SIGFuzz flags potential timing side channels using trace properties evaluated on cycle-
accurate commit traces.

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 11

Fuzzing
Engine

Mutated
Test

Generation

Evaluate
Trace

Properties
RTL

Simulation

RTL
Simulation

Signature
Extraction and

Binning

Coverage Feedback

Bin
Database1 4 5

6

3

211
Report

Report
Generation

uTmut

uTrefRef. Test

Mut. Test

Ref. Test

SIGFuzz: Evaluation

▪ Evaluated on Rocket and BOOM RISC-V processors.
▪ Discovered both known and new timing side channels.

▪ 3 new side channels
▪ 2 known side channels

▪ Spectre-style attack based on a newly discovered side channel on BOOM

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 12

Summary

▪ Fuzzing is a proven software testing technique that is recently adapted for hardware
testing.

▪ ProcessorFuzz introduces a new coverage metric based on CSRs, which improves the
overall efficiency of processor fuzzing.
▪ ProcessorFuzz discovered 8 new bugs in Rocket, BOOM, and BlackParrot processors.
▪ ProcessorFuzz will be open-sourced soon: https://github.com/bu-icsg/ProcessorFuzz

▪ SIGFuzz introduces a generic method for discovering a broader scope of microarchitectural
timing side channels in processors.
▪ SIGFuzz discovered 3 new side channels in Rocket and BOOM processors.
▪ SIGFuzz is open-sourced: https://github.com/bu-icsg/SIGFuzz

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 13

https://github.com/bu-icsg/ProcessorFuzz
https://github.com/bu-icsg/SIGFuzz

References

1. S. Canakci, C. Rajapaksha, A. Nataraja, L. Delshadtehrani, M. Taylor, M. Egele and A. Joshi, “ProcessorFuzz: Processor Fuzzing with Control and Status
Registers Guidance,” to appear in Proc. IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 2023.

2. C. Rajapaksha, L. Delshadtehrani, M. Egele and A. Joshi, “SIGFuzz: A Framework for Discovering Microarchitectural Timing Side Channels,” to appear in Proc.
Design, Automation and Test in Europe (DATE) 2023.

3. Google, “Oss-fuzz: Continuous fuzzing for open source software,” https://github.com/google/oss-fuzz, 2016.

4. Google, “American fuzzy lop,” https://github.com/google/AFL, 2017.

5. K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz: Coverage-directed fuzz testing of rtl on fpgas,” in International Conference on Computer-Aided
Design, 2018, pp. 1–8.

6. S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and A. Joshi, “Directfuzz: Automated test generation for rtl designs using directed graybox
fuzzing,” in Design Automation Conference, 2021.

7. J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl: Differential fuzz testing to find cpu bugs,” in Security and Privacy, 2021, pp. 1286–1303.

8. K. Asanovic´ et al., “The rocket chip generator,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

9. C. Celio, D. A. Patterson, and K. Asanovic, “The berkeley out-of-order machine (boom): An industry-competitive, synthesizable, parameterized risc-v
processor,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-167, Jun 2015.

10. D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and M. B. Taylor,
“Blackparrot: An agile open-source risc-v multicore for accelerator socs,” IEEE Micro, vol. 40, no. 4, pp. 93–102, 2020.

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 14

