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Outline

▪ What is Fuzzing?

▪ ProcessorFuzz: Processor Fuzzing with Control and Status Registers Guidance [1]

▪ SIGFuzz: A Framework for Discovering Microarchitectural Timing Side Channels [2]

▪ Summary 
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What is Fuzzing?

▪ Fuzzing/fuzz testing:
Ø Running the target software with random or mutated inputs. 
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Adapting Fuzzing for Hardware Testing

▪ What is the input format and how to mutate the inputs?
▪ Driving RTL signals Vs assembly test programs
▪ Mutations

▪ What is the coverage feedback metric?
▪ Standard RTL coverage metrics Vs new coverage metrics for fuzzing

▪ How to detect when the bugs get triggered?
▪ Golden models 
▪ Hardware equivalent of a software crash? 
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Fuzzing for Hardware Testing

▪ Fuzzing has been ‘recently’ adapted for hardware testing. 
▪ Hardware fuzzing research is rapidly growing [5-7]. 
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Our Contributions

▪ What is the input format and how to mutate it? 
▪ Driving RTL signals Vs assembly test programs
▪ Mutations

▪ What is the coverage feedback metric?
▪ Standard RTL coverage metrics Vs. New coverage 

metrics for fuzzing

▪ How to detect when the bugs get triggered? 
▪ Golden models 
▪ Hardware equivalent of a software crash? 
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ProcessorFuzz: Processor Fuzzing with Control and Status Registers Guidance

▪ Problem: Existing coverage metrics for processor fuzzing is limited by
▪ Lack of support for widely used Hardware Description Languages (HDLs)
▪ Misleading coverage feedback

▪ Introduces a new coverage metric for processor fuzzing. 
▪ New transition in CSR values  ->  coverage increase
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ProcessorFuzz: Design Overview

▪ ProcessorFuzz uses an ISA simulator to collect CSR transition coverage, making the 
coverage collection more efficient and HDL agnostic. 
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ProcessorFuzz: Evaluation

▪ Evaluated on Rocket [8], BOOM [9], and BlackParrot [10] RISC-V processors. 
▪ Detect known bugs 23% faster than the state-of-the-art DifuzzRTL [7].
▪ Discovered 9 new bugs 

▪ 6 in BlackParrot processor
▪ 2 in Rocket and BOOM processors
▪ 1 in Dromajo ISA simulator 
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SIGFuzz: A Framework for Discovering Microarchitectural Timing Side Channels

▪ Problem: Existing methods are limited in
▪ Scalability
▪ Scope of side channels they can discover

▪ SIGFuzz introduces a generic method for discovering microarchitectural timing side 
channels.
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SIGFuzz: Design Overview

▪ SIGFuzz flags potential timing side channels using trace properties evaluated on cycle-
accurate commit traces.  

April 7, 2023 / RajapakshaFuzzing for Discovering Bugs and Side Channels in Processors 11

Fuzzing 
Engine

Mutated
Test

Generation

Evaluate 
Trace 

Properties
RTL 

Simulation

RTL 
Simulation

Signature 
Extraction and 

Binning

Coverage Feedback

Bin
Database1 4 5

6

3

211
Report

Report 
Generation

uTmut

uTrefRef. Test

Mut. Test

Ref. Test



SIGFuzz: Evaluation

▪ Evaluated on Rocket and BOOM RISC-V processors. 
▪ Discovered both known and new timing side channels.

▪ 3 new side channels
▪ 2 known side channels

▪ Spectre-style attack based on a newly discovered side channel on BOOM
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Summary

▪ Fuzzing is a proven software testing technique that is recently adapted for hardware 
testing. 

▪ ProcessorFuzz introduces a new coverage metric based on CSRs, which improves the 
overall efficiency of processor fuzzing. 
▪ ProcessorFuzz discovered 8 new bugs in Rocket, BOOM, and BlackParrot processors. 
▪ ProcessorFuzz will be open-sourced soon: https://github.com/bu-icsg/ProcessorFuzz

▪ SIGFuzz introduces a generic method for discovering a broader scope of microarchitectural 
timing side channels in processors.
▪ SIGFuzz discovered 3 new side channels in Rocket and BOOM processors. 
▪ SIGFuzz is open-sourced: https://github.com/bu-icsg/SIGFuzz
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