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Access-driven vs. Cache Occupancy

e Access-Driven Attacks

Prime+Probe, Flush+Reload, Evict+Time...

Leak victim’s address information

Need high resolution timer

e Cache Occupancy Attacks
Leak victim’s data amount information

No need of high resolution timer
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Overview of this work

* We present a novel suite of cache occupancy attacks

» Targeting the System Level Cache(SLC) of Apple M-series SoCs
—an exclusive last-level cache GPU and CPU clusters

» Reverse-engineer the SLC’s sharing mechanism

Propose cache occupancy attacks where adversary can monitor GPU and
other CPU cluster activities from their own CPU cluster.

* Three attacks:
* Website Fingerprinting Attack
* Cross-Origin Pixel Stealing Attack
* Screen Display Snooping Attack



Memory structure of APPLE M1
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e SLCis shared between CPU and iGPU
e SLCis not inclusive to CPU’s L2 cache, makes it different from typical(intel’s) LLC.




Reverse engineer Apple M1’s SLC

* Inclusiveness Policy:

A hybrid inclusiveness policy----inclusive with GPU cache but exclusive with
the CPU cache.

* Set index mapping:

A distinctive SLC set index mapping mechanism----Excludes the lowest 13
bits of the physical address for indexing and uses bits from the 14th position
and above.

(Typical cache configurations utilize lower bits of the memory address for
cache indexing)
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SLC Occupancy Attack

Cache occupancy attacks

—attacker create a buffer to fill cache, keep probing it to monitor victim’s

cache usage
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Figure 4: Cache filling with different data structure




SLC Occupancy Attack

* Comparing with L2 cache occupancy attack

3 set ups: Intra-cluster, Cross-Cluster and CPU-GPU

* Spy access time vs. victim activities:
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* Experimental environment:

Case study on website environments

Devices: Apple M1, Apple M1 Pro, Apple M3 Pro
Browsers: Chrome Firefox, Safari.

* Evaluating the performance of side channel on T-test
SLC occupancy channel has better performance on Cross Browsers set

Browsers M1 M1 Pro M3 Pro

Spy-Victim SLC L2[20] | SLC L2 |SLC L2
Cross-tab Chrome | 26.1 272 23.2 22.1 | 242 5.2
Cross-tab Safari 11.6 7.3 11.2 6.6 | 125 24
Cross-tab FireFox | 13.8 15.7 14.7 6.8 | 145 6.7
Chrome-Safari 14.3 11.6 123 28 | 142 5.8
Chrome-FireFox 152 13.5 148 44 | 148 438
Safari-Chrome 14.6 2.8 15.9 2.2 152 2.8
Safari-FireFox 9.3 3.1 7:5 3.6 94 3.1
FireFox-Chrome 8.4 16.2 7.3 4.8 98 44
FireFox-Safari 10.4 12.3 12:1 & 3 ) 10.1 24

Table 1: Benchmark results/T-test score



Case study on website environments

* Website fingerprint attack:

Table 2: Website fingerprinting accuracies of different side-

channels on various SoCs under different scenarios

SoC Scenario Side-channel Accuracy
Chrome-Chrome i 90.5%
L2 [20] 91.2%
Apple M1
Safari-Chrome SLC 87.4%
L2 33.4%
Chrome-Chrome i 92.3%
L2 91.7%
Apple M1 Pro
Safari-Chrome SLC 88.6%
L2 35.3%
Chrome-Chrome SLC 92.4%
L2 76.3%
Apple M3 Pro
Safari-Chrome SLC 90.4%
L2 37.9%

* Pixel Stealing Attack:
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Screen-capturing Attack

* Using SLC occupancy channel to monitor Screen showing process(Graphic rendering)

* New finding: Data usage of Screen showing is related to the screen’s contents while the
screen if full of big blocks of Black/White areas.
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Screen-capturing Attack

* New attack framework—Precisely monitoring frame activities

SLC occupancy probing aligned with Vsync signal
Calculate the difference between the two probing

Vsync —b— St - -
i
Timmer
Start

Vsync

Observation
Window

Figure 10: Precisely monitoring frame activities



* Collecting a Trace for a screen frame .
(While the image on the screen doesn’t changejereen images

* Observe 28 short epochs during the frame
rendering process, which are correspond to 28
evenly divided regions of the screen, vertically

#Evicted Cache Lines

Screen-capturing Attack

from top to bottom.
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Figure 11: Trace of a full frame
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the screen bars (with varying zero pixel values)
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Screen-capturing Attack

* Attack example:
Extracting print numbers

Extracting Barcodes

Flash epoch areas B Guessed flash epochs

Real flash epochs
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Figure 13: Screen display snooping attack method
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Figure 14: ITF barcode






