
Exploiting Exclusive System-Level Cache in Apple M-
Series SoCs for Enhanced Cache Occupancy Attacks

Tianhong Xu Aidong Adam Ding and Yunsi Fei

Presenter: Tianhong Xu
Electrical and Computer Engineering Department

Northeastern University, Boston, Massachusetts

This work was supported in part by 
National Science Foundation under 
grants SaTC-1929300 and CNS-1916762.



Cache Attacks: Leaking Secrets via Microarchitectural Side Channels

• Modern CPUs use caches to accelerate 
memory access
• A shared resource - between processes, 

threads, and cores, and even cross CPU 
and iGPU

• Attackers can infer secret of the victim by 
observing cache access patterns

• Different types
• Time-driven 
• Access-driven 
• Cache occupancy 

2



Access-driven vs. Cache Occupancy

• Access-Driven Attacks

Prime+Probe, Flush+Reload, Evict+Time…

Leak victim’s address information

Need high resolution timer

• Cache Occupancy Attacks

Leak victim’s data amount information

No need of high resolution timer

3

Access-driven Cache Occupancy

Granularity Fine – cache 
line/set state

Coarse – entire 
cache state

Information 
leakage Address related Data volume

Measurement 
requirement

High-resolution 
timer

Low-resolution 
timer 

Examples



Overview of this work

• We present a novel suite of cache occupancy attacks
• Targeting the System Level Cache(SLC) of Apple M-series SoCs

 —an exclusive last-level cache GPU and CPU clusters 
• Reverse-engineer the SLC’s sharing mechanism
• Propose cache occupancy attacks where adversary can monitor GPU and 

other CPU cluster activities from their own CPU cluster.

• Three attacks:
• Website Fingerprinting Attack 
• Cross-Origin Pixel Stealing Attack 
• Screen Display Snooping Attack 

4



Memory structure of APPLE M1

• SLC is shared between CPU and iGPU
• SLC is not inclusive to CPU’s L2 cache, makes it different from typical(intel’s) LLC.

5



Reverse engineer Apple M1’s SLC 

6

• Inclusiveness Policy:

A hybrid inclusiveness policy----inclusive with GPU cache but exclusive with 
the CPU cache. 

• Set index mapping:

A distinctive SLC set index mapping mechanism----Excludes the lowest 13 
bits of the physical address for indexing and uses bits from the 14th position 
and above.

(Typical cache configurations utilize lower bits of the memory address for 
cache indexing)



Reverse engineer Apple M1’s SLC 

7

• Inclusiveness Policy:

A hybrid inclusiveness policy----inclusive with GPU cache but exclusive with 
the CPU cache. 

• Set index mapping:

A distinctive SLC set index mapping mechanism----Excludes the lowest 13 
bits of the physical address for indexing and uses bits from the 14th position 
and above.

(Typical cache configurations utilize lower bits of the memory address for 
cache indexing)



SLC Occupancy Attack

• Cache occupancy attacks
—attacker create a buffer to fill cache, keep probing it to monitor victim’s 
cache usage

• New techniques for SLC occupancy attack-Filling SLC while bypassing L2 cache

8



SLC Occupancy Attack

• Comparing with L2 cache occupancy attack
 3 set ups: Intra-cluster, Cross-Cluster and CPU-GPU
• Spy access time vs. victim activities:

9

L2 Occupancy SLC Occupancy 



Case study on website environments

• Experimental environment:

Devices: Apple M1, Apple M1 Pro, Apple M3 Pro
Browsers: Chrome Firefox, Safari.

• Evaluating the performance of side channel on T-test
SLC occupancy channel has better performance on Cross Browsers set

10



Case study on website environments

• Website fingerprint attack:

11

• Pixel Stealing Attack:



Screen-capturing Attack

• Using SLC occupancy channel to monitor Screen showing process(Graphic rendering)

• New finding: Data usage of Screen showing is related to the screen’s contents while the 
screen if full of big blocks of Black/White areas.

12



Screen-capturing Attack

13

• New attack framework—Precisely monitoring frame activities
 SLC occupancy probing aligned with Vsync signal
 Calculate the difference between the two probing 
 



Screen-capturing Attack

14

• Collecting a Trace for a screen frame
(While the image on the screen doesn’t change)

• Observe 28 short epochs during the frame 
rendering process, which are correspond to 28 
evenly divided regions of the screen, vertically 
from top to bottom.

 



Screen-capturing Attack

15

• Attack example:

Extracting print numbers

Extracting Barcodes

 



Q&A

16


