Todd Austin -y
University of Michigan / Agita Labs N | 5%

austin@umich.edu

mailto:austin@umich.edu

Presentation Agenda

Part |: Taking Security from Good to Great
Part Il: A Vision for Privacy-Oriented Programming
Part lll: TrustForge: A Cryptographically Secure Enclave

Part I: Taking Secunty
from Good to Great

Why Security Isn’t Very Secure

New Vulnerabilities Identified Each Year, 1988-2020

180000 180,171 ; 40000

 Endless software vulnerabilities 3=
 Typically, bugs in software
 Finding/fixing vulnerabilities doesn’t scale

120000
25000

100000
20000
80000

Number of Cumulative Vulnerabilities
Number of New Vulnerabilities Identified Per Year

15000
60000 m 4 B E § E E
f 4000 g1 RrRE ﬁ o 10000
« Side channels abound
- #muaﬁsnxaﬁﬁkﬁilll
. Ob ble propert | t : :
Se rva e ro er IeS revea Secre S 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

° Control’ memory’ tlmlng, Cache’ Speculatlve Cumulative Vulnerabilities m New Vulnerabilities Per Year
« Performance-centric design creates side channels

* Case in point: 70%+ of Americans have
had their SSN stolen in the last decade

SPECTRE

Patching Our Way to Security

ESD-TR-73-51, Vel. |

* When attacked, we patch...
* We lack the technology to find all vulnerabilities
* Due to new code and new vulnerabilities
« S0, patching continues forever James P Anderson

COMPUTER SECURITY TECHNOLOGY PLANNING STUDY

» Creates an asymmetric battlefield

 Attacks only require one vulnerability CVE-2025-24993: Windows NTFS Remote Code Execution
. . .. epe . Vulnerability
 Protection requires fixing all vulnerabilities
p . . o The heap-based buffer guerflow vulnerability in Windows NTFS may allow an authorized attacker to
® Pe,‘fe Ctlon IS the en emy Of progreSS execute code locally. An attacker may trick a local user on a vulnerable system into mounting a

specially crafted VHD to trigger the vulnerability.

CISA added the CVE-2025-24993 to its Known Exploited Vulnerabilities Catalog and requested users to
patch it before April 1, 2025.

 Lacks protection for emergent attacks
« Zero protection for zero-day attacks

Software, the Root-of-Distrust

 What Is trust? Safe Rust Spectre V1 Gadget
« Knowing precisely and for certain what something #[inline(never)]
can and cannot do pub fn fetch_functlon(:gi:li\é?c;:ﬁz,usue
« Deciding if “can do” is a threat arr2: &[u8], idx: usize) -> us
L let mut val: usize = 0;
* What can software do? L
- Only what it has been attested to do e
« Unless hacked, then attested S/W can do anything }

« S0, verify the software and use safe languages

« Spectre undermines all safety in, and

verification of, software QUaLipvcr
» Spectre creates new function in mispeculation SECURITY
- Defenses do not consider transient functionality OUTCOMES

* E.g., safe Rust Spectre V1 buffer overreads

« E.g., PACMAN silent PAC pointer checks TRTJ}(T IN

SOFTWARE

* Thus, software, not just bugs in software,
IS the root of distrust 6

Taking Security from Good to Great...

1. Concentrate trust into a small component i e, 1988-2020

180000 180,171 , 40000

* Provides separation of concerns and isolation
« Approach: build a trusted secure enclave

35000

140000 30000 .
120000
25000

100000

2. Eliminate all software vulnerabilities
« But all software is (eventually) hackable!
* Approach: no S/W inside the trusted enclave

20000 *
80000

S 15000
oo W A o .~88d

40000 e

Number of Cumulative Vulnerabilities

uooo‘og}
°°°°° 5000
20000 ~
gﬂl\gﬁ
- o~
<o SN2 SR

3. Silence digital side channels " 1031590 159 190 N °
« Control, memory, timing, and microarchitecture -V |
« Approach: provably side-channel free enclave

Number of New Vulnerabilities Identified Per Year

4. Cryptographically secure data everywhere else
» Eliminates trust for all remaining S/W and H/W
» Approach: encrypt w/ authenticated high-entropy cipher

A e

s ke

« TrustForge Enclave: a H/W-only enclave without Q,.cm

software or digital side channels that computes directly
on encrypted data

Part li: A Vision for
Privacy-Oriented Prograr

Security vs. Privacy

 Are they the same? NO! Data Security
« Security — protect confidentiality, integrity and availability (CIA)
* Privacy — give data owners control over use and visibility of their data
 Partially overlapping relationship is shared by these two endeavors

* Questions to consider:

* Is It possible to have strong privacy without strong security?
* No, strong privacy demands strong security

Data Privacy

* It Is possible to have strong security without strong privacy? O
« Unfortunately, yes, strong security has no implication on privacy

* Bonus: privacy applications add value to your security research
* |IRL, H/W security is often view as a tax on system cost

TrustForge Privacy Programming Model

Data Contract:
* PKl-encrypted data key Dataflow
- Datagrant for g(x) signature

—

Data TrustForge (X
Owner Enclave User

* Encrypted verifiable computation is performed on sensitive data
« Data owner sends data contract and encrypted source data
« Computation produces encrypted results + proof-of-computation
* Only data owner can decrypt general computation results and verify dataflow

« Safe disclosures permit enclave user to see specific values
« Enabled by encrypted datagrants provided in advance by data owner
« Decryption possible if-and-only-if computation proof matches datagrant

Vi nd
r|f| by
data ner

Privacy-Enhanced Surveillance

TrustForge

Encrypted computation

e esider / ?

Return verified res e 0 HMH a,H)\ \
'A S NI .w’

\

\ truder; i
_/ . HM"F ‘J:.w ’/";‘

W
Anima’; o

!

Output Layer Input Layer
Hidden Layers

Part llI: TrustForge: A
Cryptographically
Secure Enclave

12

This is My Central Claim...

* The key to addressing security/privacy challenges is simply a
privatized functional unit...

Encrypted, Trust boundary

Authenticated,
Randomized \

Isolated,

a Verified,
/ Provable

* Denying programmers the ability to see the data they are processing reduces the
utility of S/W and H/W hacking and significantly advance data privacy!

« NOTE: This is not homomorphic encryption, it is just privacy-oriented

microarchitecture!
13

TrustForge Encrypted Computation

Encrypted PKI-Encrypted
Input

» TrustForge enclave exports a public key, hhid

PKI key exchange occurs inside enclave

S

Trust boundary

* Enclave supports RISC operations
directly on always-encrypted data

* Enclave Is decrypting, processing, checking,

and re-encrypting secret data without S/W g"ai” Encrypted 1 1UStFOTge
e .. : ore Result Enclave
vulnerabilities or digital side channels
 Enclave is protected from physical attacks, 128, 192, or 256-bit
no other S/W or H/W is trusted! o | paaton | 1en sar | Datavalueﬂ

14

TrustForge Verified Computation

« Dataflow signature describes enc_add ‘%ecx, %edx //t1 = x +y
dataflow used to create a value enc_add Yedx, Ox2 /182 =y + 2
- Inputs parameters to the computation =~ <¢-*"! 4ecx, hedx //ret = low e
* Order of ops and their dependencies &
* Implemented as a 1-way Merkle hash * 77—, i
enc_add »enc_imul —> T€t
« Kept inside encrypted packet @y — 0x2 /
« Any manipulation is detected \\: »
» Crypto-strength integrity defenses
Hy;y = hash(Iyx, Iy, opcode_enc_add)

« Swapping in alternate inputs/outputs
Adding/deleting instructions
Reordering of operands
Changing_of dependencies/dataflow 128, 192. or 256-bit
Manipulation of regs or memory

Replay of insts, regs, or memory ?{ frt J{ Signature J{ TRNG Sal J{ Data Value H -

Hyp = hash(I,,
Hyer = hash(H;, Hyp, opcode_enc_imul)

0x2, opcode_enc_add)

TrustForge Safe Disclosures

* Built on verified computation
* Disclose If key signature reproduced Datagrant Value

Dataflow Fault Dataflow
ﬁ B]] ﬁ o | zoter | voncso | omavoe]]

Decryptor
0

« Data owner provides a datagrant
* Encrypted dataflow hash of disclosable result
* Permission: decrypt, hash, re-encrypt
 Ensures only pre-approved results are seen

« Datagrant disclosure semantics:

hash,, < dec,(datagrant) JTF Enclave 1
hash,, < dec,(value) Sofe i
valuegrant — hashdg == hash,, ? dec,(value) : O afe Disclosure

16

Programming for TrustForge

« Extends language with encrypted variables g?’aii

* Bit-for-bit compatible to unprotected Integer tfnt32, tfUInt32, tfint64,

computation, but encrypted tfUInt64
Floating tfFloat, tfDouble

 Built-in support for integers, floating-point, Point
Booleans, and strings Boolean tfBool

 Operators on encrypted variables return an String/Char tiChar, ttUChar, tfString
encrypted result and encapsulate faults

enc_cmov (secret, x+1, x);
enc_cmov (!secret, y+1, y);

 Decision processing on encrypted variables Lox
Implemented with CMOV primitive

« Secret-dependent array indexing | for(int i=0; i<len(arr); i++:)

Implemented with ORAM primitives 2 et = enc cmov(immsecret, arrl[il, ret);
17

Newton-Raphson Solver on TrustForge

// calculate fn value using Newton-Raphson method

tfDouble

rn_solver(tfBool& converged, double maxerr,
unsigned maxiter, fn_type f, fn_type df)

{

unsigned iter;
tfDouble guess = 1.0;

converged = false;

for (iter = 0; iter < maxiter; iter++)

{
converged = tfFabs(f(guess)) <= maxerr;
seDouble newGuess = guess - f(guess)/df(quess);
guess = tfCMOV(converged, guess, newGuess);

}

return guess;

TrustForge Enclave Capabilities

- Data encryption ensures that sensitive data is °$i§©
protected everywhere in the system with high- » Hotie

- Encrypted computation ensures that hackers and N
programmers cannot observe sensitive computation
receipts to ensure that hackers/programmers cannot (
change dataflow
owners to cooperatively decrypt specific computation
results in a way that hackers or programmers cannot

entropy ciphers =
- Verified computation gives end-to-end integrity
- Safe disclosures allow programmers and data A
| -
exploit

19

TrustForge Enclave for Azure/AWS

4 TrustForge Enclave for Azure/AWS

Symmetric Cipher
Decryptors

* Deployed on AWS/Azure FPGA nodes
* 6% of total UltraScale+ FPGA, ~190k gates

* Logic locked, watermarked,
and supporting forward secrecy

« 2-person years to build, fuzz, and verify

AXI Interface
TRNG Core

-
O

Symmetric Cipher
Encryptors

° TrustForge CompeteS with R Performance Comparison (vs. Native)
 Traditional TEEs —_~1° Today
« Homomorphic encryption (HE/FHE) u,°
« Multiparty computation (MPC) T Someday...
* Faster than Integer HE/FHE, more 3 \
secure than TEEs ﬁmo
« 1Mx+ faster than Integer FHE & <~ & &

& 20

TrustForge Security Analysis

* Worked with In-Q-Tel & Blue
Bastion, pen tested for 3 months
 Red team had full access to all IP
e Zero vulnerabilities found

 Formal verification with Princeton

« Secure for any program on our
TrustForge implementation

e Zero vulnerabilities found
 Won award at ACM CCS 2023

Findings Summary

A total of zero (0) findings were identified in this report.

Critical

0]

Blue Bastion

@

Medium Informational

0

Security Verification of Low-Trust Architectures

Qinhan Tan*
ginhant@princeton.edu
Princeton University
Princeton, New Jersey, USA

Lauren Biernacki

Yonathan Fisseha*

yonathan@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Jean-Baptiste Jeannin

Shibo Chen*
chshibo@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

Sharad Malik

biernacl@lafayette.edu jeannin@umich.edu sharad@princeton.edu
Lafayette College University of Michigan Princeton University
Easton, Pennsylvania, USA Ann Arbor, Michigan, USA Princeton, New Jersey, USA
Todd Austin
austin@umich.edu
University of Michigan

Ann Arbor, Michigan, USA

ABSTRACT

Low-trust architectures work on, from the viewpoint of software,
always-encrypted data, and significantly reduce the amount of hard-
ware trust to a small software-free enclave component. In this paper,
we perform a complete formal verification of a specific low-trust
architecture, the Sequestered Encryption (SE) architecture, to show
that the design is secure against direct data disclosures and digital
side channels for all possible programs. We first define the secu-
rity requirements of the ISA of SE low-trust architecture. Looking

ACM Reference Format:

Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-Baptiste
Jeannin, Sharad Malik, and Todd Austin. 2023. Security Verification of Low-
Trust Architectures. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS '23), November 26-30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 19 pages. https://doi.org/
10.1145/3576915.3616643

1 INTRODUCTION

21

Parting Thoughts...

* What this work has taught me...
1. We will never stop software hacking, so remove trust in S/W
2. We will never stop uArch side channels, so minimize trust in H/W
3. We will only stop side channels if we isolate and formally verify trusted H/W
4. Since cryptography is the only superpower in security, use it elsewhere

* What an opportune moment it is to be a H/W security architect!
» Durable security can only come from H/W security or advanced cryptography
« H/W security iIs more programmable and performant than alternatives
* Thus, we can create powerful solutions to address privacy challenges today

* In the form of efficient cryptographic-strength enclaves that support
programmer-friendly privacy-programming paradigms

22

To Learn More about TrustForge...

« “Sequestered Encryption: A Hardware Technique for Comprehensive
Data Privacy”, 2022 IEEE SEED Conference

« “Security Verification of Low-Trust Architectures”, 2023 IEEE CCS

 “Privacy-Enhanced Computation via Sequestered Encryption”, US
Patent 12,105,855

* "Privacy-Enhanced Computation via Sequestered Encryption”, US
Patent 11,748,521

» Agita Labs, https://aqgitalabs.com

« Hardware Security Tutorial,
https://www.youtube.com/playlist?list=PLPokM2gEmTDCIgPTX GOLe
MZkuf7038yS

23

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9935044
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9935044
https://arxiv.org/pdf/2309.00181
https://ppubs.uspto.gov/api/pdf/downloadPdf/12105855?requestToken=eyJzdWIiOiI3N2NjODJjMS1iZDhiLTRhYzktYTY2YS1iNGUwZWZkMGMyOTUiLCJ2ZXIiOiI4NzdkNzA2ZS00MWUyLTQwNzgtOWE4Ny04OWNlOTMzYTEzZjYiLCJleHAiOjB9
https://ppubs.uspto.gov/api/pdf/downloadPdf/11748521?requestToken=eyJzdWIiOiI3N2NjODJjMS1iZDhiLTRhYzktYTY2YS1iNGUwZWZkMGMyOTUiLCJ2ZXIiOiI4NzdkNzA2ZS00MWUyLTQwNzgtOWE4Ny04OWNlOTMzYTEzZjYiLCJleHAiOjB9
https://agitalabs.com/
https://www.youtube.com/playlist?list=PLPokM2qEmTDClgPTX_GOLeMZkuf7o38yS
https://www.youtube.com/playlist?list=PLPokM2qEmTDClgPTX_GOLeMZkuf7o38yS

	Slide 1: Hardware Security, FTW!
	Slide 2: Presentation Agenda
	Slide 3: Part I: Taking Security from Good to Great
	Slide 4: Why Security Isn’t Very Secure
	Slide 5: Patching Our Way to Security
	Slide 6: Software, the Root-of-Distrust
	Slide 7: Taking Security from Good to Great…
	Slide 8: Part II: A Vision for Privacy-Oriented Programming
	Slide 9: Security vs. Privacy
	Slide 10: TrustForge Privacy Programming Model
	Slide 11: Privacy-Enhanced Surveillance
	Slide 12: Part III: TrustForge: A Cryptographically Secure Enclave
	Slide 13: This is My Central Claim…
	Slide 14: TrustForge Encrypted Computation
	Slide 15: TrustForge Verified Computation
	Slide 16: TrustForge Safe Disclosures
	Slide 17: Programming for TrustForge
	Slide 18: Newton-Raphson Solver on TrustForge
	Slide 19: TrustForge Enclave Capabilities
	Slide 20: TrustForge Enclave for Azure/AWS
	Slide 21: TrustForge Security Analysis
	Slide 22: Parting Thoughts…
	Slide 23: To Learn More about TrustForge…

