
Hardware Security, FTW!

Todd Austin

University of Michigan / Agita Labs
austin@umich.edu

mailto:austin@umich.edu


Presentation Agenda

• Part I: Taking Security from Good to Great

• Part II: A Vision for Privacy-Oriented Programming

• Part III: TrustForge: A Cryptographically Secure Enclave

2



Part I: Taking Security
from Good to Great

3



• Endless software vulnerabilities
• Typically, bugs in software

• Finding/fixing vulnerabilities doesn’t scale

• Side channels abound
• Observable properties reveal secrets

• Control, memory, timing, cache, speculative

• Performance-centric design creates side channels

• Case in point: 70%+ of Americans have
had their SSN stolen in the last decade

Why Security Isn’t Very Secure

Source: IBM X-Force Red

4



• When attacked, we patch…
• We lack the technology to find all vulnerabilities

• Due to new code and new vulnerabilities

• So, patching continues forever

• Creates an asymmetric battlefield
• Attacks only require one vulnerability

• Protection requires fixing all vulnerabilities

• “Perfection is the enemy of progress”

• Lacks protection for emergent attacks
• Zero protection for zero-day attacks

Patching Our Way to Security

5



• What is trust?
• Knowing precisely and for certain what something 

can and cannot do
• Deciding if “can do” is a threat

• What can software do?
• Only what it has been attested to do
• Unless hacked, then attested S/W can do anything
• So, verify the software and use safe languages

• Spectre undermines all safety in, and 
verification of, software

• Spectre creates new function in mispeculation
• Defenses do not consider transient functionality
• E.g., safe Rust Spectre V1 buffer overreads
• E.g., PACMAN silent PAC pointer checks

• Thus, software, not just bugs in software, 
is the root of distrust

Software, the Root-of-Distrust
Safe Rust Spectre V1 Gadget

6



1. Concentrate trust into a small component
• Provides separation of concerns and isolation
• Approach: build a trusted secure enclave

2. Eliminate all software vulnerabilities
• But all software is (eventually) hackable!
• Approach: no S/W inside the trusted enclave

3. Silence digital side channels
• Control, memory, timing, and microarchitecture
• Approach: provably side-channel free enclave

4. Cryptographically secure data everywhere else
• Eliminates trust for all remaining S/W and H/W
• Approach: encrypt w/ authenticated high-entropy cipher

• TrustForge Enclave: a H/W-only enclave without
software or digital side channels that computes directly
on encrypted data

Taking Security from Good to Great…

Source: IBM X-Force Red

7



Part II: A Vision for
Privacy-Oriented Programming

8



Security vs. Privacy

• Are they the same? No!
• Security – protect confidentiality, integrity and availability (CIA)

• Privacy – give data owners control over use and visibility of their data

• Partially overlapping relationship is shared by these two endeavors

• Questions to consider:

• Is it possible to have strong privacy without strong security?
• No, strong privacy demands strong security

• It is possible to have strong security without strong privacy?
• Unfortunately, yes, strong security has no implication on privacy

• Bonus: privacy applications add value to your security research
• IRL, H/W security is often view as a tax on system cost

9



TrustForge Privacy Programming Model

• Encrypted verifiable computation is performed on sensitive data
• Data owner sends data contract and encrypted source data

• Computation produces encrypted results + proof-of-computation

• Only data owner can decrypt general computation results and verify dataflow

• Safe disclosures permit enclave user to see specific values
• Enabled by encrypted datagrants provided in advance by data owner

• Decryption possible if-and-only-if computation proof matches datagrant

Data 

Owner
TrustForge 

Enclave User

Data Contract:

• PKI-encrypted data key

• Datagrant for g(x)

x
g(x)

f(x)

g(x)

Dataflow

signature

10

Visible and 

verifiable by

data owner



Privacy-Enhanced Surveillance

Encrypted computation
TrustForge

Return verified results
Resident

Intruder

Animal

11



Part III: TrustForge: A 
Cryptographically
Secure Enclave

12



• The key to addressing security/privacy challenges is simply a

privatized functional unit…

• Denying programmers the ability to see the data they are processing reduces the 

utility of S/W and H/W hacking and significantly advance data privacy!

• NOTE: This is not homomorphic encryption, it is just privacy-oriented 

microarchitecture!

This is My Central Claim…

ALU

Trust boundary Isolated,

Verified,

Provable

Encrypted,

Authenticated,

Randomized

13



Main

Core
TrustForge 

Enclave

ALU

• TrustForge enclave exports a public key, 

PKI key exchange occurs inside enclave

• Enclave supports RISC operations 

directly on always-encrypted data

• Enclave is decrypting, processing, checking,

and re-encrypting secret data without S/W 

vulnerabilities or digital side channels

• Enclave is protected from physical attacks, 

no other S/W or H/W is trusted! 

TrustForge Encrypted Computation
Encrypted

Input

PKI-Encrypted

Key

Encrypted

Result

public

private

Trust boundary

Encrypt

Decrypt Decrypt

Fault 

Hist

Dataflow 

Signature
TRNG Salt Data Value

128, 192, or 256-bit

14



TrustForge Verified Computation
• Dataflow signature describes 

dataflow used to create a value
• Inputs parameters to the computation

• Order of ops and their dependencies

• Implemented as a 1-way Merkle hash

• Kept inside encrypted packet
• Any manipulation is detected

• Crypto-strength integrity defenses
• Swapping in alternate inputs/outputs

• Adding/deleting instructions

• Reordering of operands

• Changing of dependencies/dataflow

• Manipulation of regs or memory

• Replay of insts, regs, or memory
15

Fault 

Hist

Dataflow 

Signature
TRNG Salt Data Value

128, 192, or 256-bit



Fault 

Hist

Dataflow 

Signature
TRNG Salt Data Value

Value

TrustForge Safe Disclosures
• Built on verified computation

• Disclose if key signature reproduced

• Data owner provides a datagrant
• Encrypted dataflow hash of disclosable result
• Permission: decrypt, hash, re-encrypt
• Ensures only pre-approved results are seen

• Datagrant disclosure semantics:
hashdg ← deck(datagrant)
hashval ← deck(value)
valuegrant ← hashdg == hashval ? deck(value) : 0

Perm
Dataflow 

Signature
TRNG Salt

Datagrant

16

Decryptor

TF Enclave

==

MUX

0

Safe Disclosure



• Extends language with encrypted variables

• Bit-for-bit compatible to unprotected 
computation, but encrypted

• Built-in support for integers, floating-point, 
Booleans, and strings

• Operators on encrypted variables return an 
encrypted result and encapsulate faults

• Decision processing on encrypted variables 
implemented with CMOV primitive

• Secret-dependent array indexing 
implemented with ORAM primitives

Programming for TrustForge

Type 

Class
C++ Data Types

Integer tfInt32, tfUInt32, tfInt64, 

tfUInt64

Floating 

Point

tfFloat, tfDouble

Boolean tfBool

String/Char tfChar, tfUChar, tfString

17



Newton-Raphson Solver on TrustForge

18



TrustForge Enclave Capabilities

• Data encryption ensures that sensitive data is 
protected everywhere in the system with high-
entropy ciphers

• Encrypted computation ensures that hackers and 
programmers cannot observe sensitive computation

• Verified computation gives end-to-end integrity 
receipts to ensure that hackers/programmers cannot 
change dataflow

• Safe disclosures allow programmers and data 
owners to cooperatively decrypt specific computation 
results in a way that hackers or programmers cannot 
exploit

E

2

E
H

E T

F

E

n

c

l

a

v

e

Z

K

19



Performance Comparison (vs. Native)

• Deployed on AWS/Azure FPGA nodes
• 6% of total UltraScale+ FPGA, ~190k gates

• Logic locked, watermarked,
and supporting forward secrecy

• 2-person years to build, fuzz, and verify

• TrustForge competes with
• Traditional TEEs

• Homomorphic encryption (HE/FHE)

• Multiparty computation (MPC)

• Faster than Integer HE/FHE, more
secure than TEEs

• 1Mx+ faster than Integer FHE

TrustForge Enclave for Azure/AWS

Symmetric Cipher 

Decryptors

Symmetric Cipher 

Encryptors

Int/String 

ALU
FPU

H
a

s
h
 

M
o

d
u

l

e

P
K

I 

D
e

c
ry

p
t

o
rT

R
N

G
 C

o
re

A
X

I 
In

te
rf

a
c
e

TrustForge Enclave for Azure/AWS 

20

Today

Someday…



TrustForge Security Analysis

• Worked with In-Q-Tel & Blue
Bastion, pen tested for 3 months

• Red team had full access to all IP

• Zero vulnerabilities found

• Formal verification with Princeton
• Secure for any program on our

TrustForge implementation

• Zero vulnerabilities found

• Won award at ACM CCS 2023

21



Parting Thoughts…

• What this work has taught me…
1. We will never stop software hacking, so remove trust in S/W

2. We will never stop uArch side channels, so minimize trust in H/W

3. We will only stop side channels if we isolate and formally verify trusted H/W

4. Since cryptography is the only superpower in security, use it elsewhere

• What an opportune moment it is to be a H/W security architect!
• Durable security can only come from H/W security or advanced cryptography

• H/W security is more programmable and performant than alternatives

• Thus, we can create powerful solutions to address privacy challenges today

• In the form of efficient cryptographic-strength enclaves that support 
programmer-friendly privacy-programming paradigms

22



• “Sequestered Encryption: A Hardware Technique for Comprehensive 
Data Privacy”, 2022 IEEE SEED Conference

• “Security Verification of Low-Trust Architectures”, 2023 IEEE CCS

• “Privacy-Enhanced Computation via Sequestered Encryption”, US 
Patent 12,105,855

• “Privacy-Enhanced Computation via Sequestered Encryption”, US 
Patent 11,748,521

• Agita Labs, https://agitalabs.com

• Hardware Security Tutorial, 
https://www.youtube.com/playlist?list=PLPokM2qEmTDClgPTX_GOLe
MZkuf7o38yS

To Learn More about TrustForge…

23

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9935044
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9935044
https://arxiv.org/pdf/2309.00181
https://ppubs.uspto.gov/api/pdf/downloadPdf/12105855?requestToken=eyJzdWIiOiI3N2NjODJjMS1iZDhiLTRhYzktYTY2YS1iNGUwZWZkMGMyOTUiLCJ2ZXIiOiI4NzdkNzA2ZS00MWUyLTQwNzgtOWE4Ny04OWNlOTMzYTEzZjYiLCJleHAiOjB9
https://ppubs.uspto.gov/api/pdf/downloadPdf/11748521?requestToken=eyJzdWIiOiI3N2NjODJjMS1iZDhiLTRhYzktYTY2YS1iNGUwZWZkMGMyOTUiLCJ2ZXIiOiI4NzdkNzA2ZS00MWUyLTQwNzgtOWE4Ny04OWNlOTMzYTEzZjYiLCJleHAiOjB9
https://agitalabs.com/
https://www.youtube.com/playlist?list=PLPokM2qEmTDClgPTX_GOLeMZkuf7o38yS
https://www.youtube.com/playlist?list=PLPokM2qEmTDClgPTX_GOLeMZkuf7o38yS

	Slide 1: Hardware Security, FTW! 
	Slide 2: Presentation Agenda
	Slide 3: Part I: Taking Security from Good to Great 
	Slide 4: Why Security Isn’t Very Secure
	Slide 5: Patching Our Way to Security
	Slide 6: Software, the Root-of-Distrust
	Slide 7: Taking Security from Good to Great…
	Slide 8: Part II: A Vision for Privacy-Oriented Programming 
	Slide 9: Security vs. Privacy
	Slide 10: TrustForge Privacy Programming Model
	Slide 11: Privacy-Enhanced Surveillance
	Slide 12: Part III: TrustForge: A Cryptographically Secure Enclave 
	Slide 13: This is My Central Claim…
	Slide 14: TrustForge Encrypted Computation
	Slide 15: TrustForge Verified Computation
	Slide 16: TrustForge Safe Disclosures
	Slide 17: Programming for TrustForge
	Slide 18: Newton-Raphson Solver on TrustForge
	Slide 19: TrustForge Enclave Capabilities
	Slide 20: TrustForge Enclave for Azure/AWS
	Slide 21: TrustForge Security Analysis
	Slide 22: Parting Thoughts…
	Slide 23: To Learn More about TrustForge…

